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Abstract

Image segmentation with specific constraints has found applications in
several areas such as biomedical image analysis and data mining. In this
paper, we study the problem of simultaneous detection of both borders
of a doughnut-shaped and smooth objects in 2-D medical images. Im-
age objects of that shape are often studied in medical applications. We
present an O(IJU(U − L) log J

U
log(U − L)) time algorithm, where the

size of the input 2-D image is I × J , M is the smoothness parameter
with 1 ≤ M ≤ J , and L and U are the thickness parameters specifying
the thickness between two border contours of a doughnut-shaped object.
Previous approaches for solving this segmentation problem are computa-
tionally expensive and/or need a lot of user interference. Our algorithm
improves the straightforward dynamic programming algorithm by a factor

of O( J(U−L)M2

U log J

U
log(U−L)

). We explore some interesting observations, which

make possible to apply the divide-and-conquer strategy combined with dy-
namic programming. Our algorithm is also based on computing optimal
paths in an implicitly represented graph.

Article Type Communicated by Submitted Revised

Regular paper X. He October 2005 May 2007

This research was supported in part by an NIH-NIBIB research grant R01-EB004640,

in part by a faculty start-up fund from the University of Iowa, and in part by a seed

grant award from the American Cancer Society through an Institutional Research

Grant to the Holden Comprehensive Cancer Center, the University of Iowa, Iowa City,

Iowa, USA. Part of this work was done at the Department of Computer Science, the

University of Texas - Pan American, Edinburg, TX 78541.



X. Wu, Doughnut-Shaped Object Segmentation, JGAA, 11(1) 215–237 (2007)216

1 Introduction

One of the biggest challenges in medical image analysis is accurate image seg-
mentation, which is a key to solving problems in numerous applications such
as medical diagnosis, surgical treatment planning, and brain mapping. Image
segmentation aims to define accurate boundaries for the objects or regions of
interest captured by the image data. This task is in practice quite often per-
formed by human manual tracing. While manual tracing is robust, it is tedious,
time-consuming, and can have a significant inter-observer and intra-observer
variability [24]. Hence, efficient and effective automated segmentation methods
are highly desirable for many applications. Most of the known image segmenta-
tion techniques used today are region based – examples include region growing
[20], fuzzy connectivity [26, 14], and watershed techniques [27]. The second
family segmentation techniques consists of edge-based (boundary-based) meth-
ods. Examples include active shape models [6, 8] and snakes [16, 28, 5], and
level sets [19, 18]. Combinations of edge-based and region-based approaches
are emerging, such as Active Appearance Models (AAM) [7]. All of these tech-
niques are frequently iterative and their operations are based on a sequence
of locally optimal steps, with no guarantee of achieving global optimality once
they converge to a solution. As a result, segmentation is frequently locally in-
correct and hence requires substantial human supervision and interaction. The
region-based methods also often suffer from the problem of “leaking” into sur-
rounding regions. In some applications, image segmentation needs to make use
of additional shape information because the target objects are expected to have
certain topological or geometric structures or satisfy specific constraints.

(a) (b)

Figure 1: Illustrating a doughnut-shaped structure.(a) A retinal optic disc image
consisting of the rim and the cup. (b) The manually traced result of the rim
(gray) and the cup (white) by an expert.

In this paper, we study image segmentation for doughnut-shaped and smooth
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objects in two dimensions. Doughnut-like shape and smoothness capture the
properties of abundant objects in medical images, such as vessels, left ventricles,
bones, ducts, and vertebrae. Figure 1 shows a photograph of a retinal optic disc,
which consists of the rim and the cup whose boundaries are coupled with each
other to form a doughnut-like shape. Conventional segmentation approaches
treat such two boundaries independently and the contours are extracted sep-
arately, which ignore the relevant information of the coupled borders. Those
methods sometimes fail to accurately identify the target contours, especially
with the presence of poor contrast, noise, or adjacent structures near the target
object [20, 23]. This paper considers the approach of simultaneous detection
of coupled contours in 2-D medical images. This approach, intended to mimic
the boundary detection strategy of a human observer who will use the position
of one contour to create and/or confirm hypotheses about the position of the
other contour, has attracted considerable research efforts [21, 23, 12, 29, 20].
There are two major methods for simultaneous detection of coupled contours:
graph searching and variants of active contour models. Sonka et al. [21, 20]
developed a method for simultaneous detection of both coronary borders in an
n × n image. Their approach is based on searching an optimal path in a 3-D
lattice graph with O(n3) vertices and edges. Unfortunately, it relies on users to
define an approximate centerline between the coupled borders to construct the
3-D graph. Very recently, Spreeuwers and Breeuwer [23] extended the active
contour method by imposing the geometric properties of coupled boundaries
and proposed a so-called coupled active contour model to detect the left ven-
tricular epi- and endo-cardinal borders simultaneously. However, this approach
suffers the same shortcoming as the active contour model. The major drawback
is the lack of the capability of producing globally optimal solutions. The perfor-
mance of the active contour model is in general sensitive to the initial contour,
which has to be initialized very close to the true boundary of the target object.
In this paper, we develop a new efficient algorithm based on graph searching
for extracting globally optimal coupled-contours simultaneously with much less
user interference.

In general, an original 2-D image can be described by a function I(x,y)
that defines the intensity of each pixel (x, y) in the image. As was done in
[4, 20, 22, 24], we perform a polar coordinate transformation on I(x,y) to
obtain its corresponding image P(i, j). Then, the doughnut-shaped object in
I(x,y) corresponds to a “strip” in P(i, j) as shown in Figure 2. In this paper,
we view P(i, j) as the input. Let P(i, j) be a 2-D image of size I × J (i.e.,
P(i, j) = {(i, j) | i = 0, 1, . . . , I−1, j = 0, 1, . . . , J−1}). We focus on computing
an optimal smooth strip in P(i, j).

Formally, a 2-D object Q is said to be stripped with respect to a line l if
for every line l′ that is orthogonal to l, the intersection Q ∩ l′ is a connected
component (possibly an empty set). A 2-D object is x-stripped if the line l is the
x-axis. We define the thickness of an x-stripped object Q at x = x0 as the length
of the intersection between Q and the line l : x = x0. For an x-stripped object
in medical images, we assume its thickness ranges from L to U with 0 < L < U

(e.g., the wall thickness of vessels changes in a certain range). Roughly speaking,
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Figure 2: Illustrating the polar transformation on I(x,y). (a) A schematic
doughnut-shaped object. (b) Transforming the circular region indicated by the
circle in (a), including the doughnut-shaped object.

the smoothness constraint means that two distinct pixels (i, j) and (i′, j′) of a
2-D image can be adjacent to each other on the boundary of a segmented object
if the i-th and i′-th rows are neighboring to each other (i.e., |i − i′| = 1) and j

is “close” enough to j′ (i.e., |j − j′| < M , where M is an input parameter with
1 ≤ M ≤ J). A 2-D image P(i, j) can be viewed as representing a setting on
a doughnut-shaped object, with the last row of P(i, j) being treated as being
adjacent to the first row (i.e., P(i, j) is “bended” to form a 2-D torus). A smooth
strip in P(i, j) consists of two non-crossing smooth contours CM ’s (i.e., coupled
contours) in such a “torial” image, with each defined as follows:

1. CM starts at a pixel (0, j0) in the first row of P(i, j), for some j0 ∈
{0, 1, . . . , J − 1}.

2. CM consists of a sequence of I pixels (0, j0), (1, j1), . . . , (I − 1, jI−1),
one from each row of P(i, j), such that for every k = 0, 1, . . . , I − 1, |jk −
j(k+1) mod I

| < M (i.e., CM satisfies the monotonicity and smoothness

constraints).

Note that the contour CM is really a closed path in the “torial” P(i, j) that is
monotone and smooth. The boundaries of some medical objects in 2-D images
can be modeled as such coupled contours [22, 23, 20, 24, 15], and it is natural
that one would like to find the “best” contours (i.e., ones with maximum total
likehood of pixels on the contours) to bound a sought object.

We present an O(IJU(U −L) log J
U

log(U −L)) time algorithm for segment-
ing a smooth strip in image P(i, j). Note that our time bound is independent
of the smoothness parameter M , which could be as large as J . Our algorithm
improves the straightforward dynamic programming algorithm by a factor of

O( J(U−L)M2

U log J

U
log(U−L)

). This segmentation problem is modeled as searching two op-

timal non-crossing paths in a graph of size O(IJM) that is constructed from
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the input image P(x,y). Our algorithm is based on an interesting observa-
tion which enables us to apply divide-and-conquer strategy and to compute
the optimal non-crossing paths in an implicitly represented graph by dynamic
programming.

Image segmentation with specific shape constraints arises in various appli-
cations. Certain medical image analysis techniques (e.g., cardiac MRI and
intravascular ultrasound imaging) are based on segmenting star-shaped and
smooth objects [4, 9, 20, 22, 24, 3, 15]. Asano et al. [1] presented an O(I2J2) time
algorithm for segmenting an x-monotone and connected object in a 2-D image
based on optimizing the interclass variance criterion [13] and by using compu-
tational geometry techniques. Segmenting star-shaped/stripped/monotone and
connected objects (which is seemingly quite restricted) can be used as an impor-
tant step in image segmentation for more general settings [1, 15]. For instance,
the primary difficulty with the active contour models is finding a good starting
point for complicated objects; perhaps our algorithms could be used to get an
approximation of the boundary and used to initialize the active contour model.
In addition, segmentation of monotone and connected objects has been applied
to extract optimized 2-D association rules from large databases for data mining
and financial applications [10, 17, 25].

2 Detecting Smooth Strips in 2-D Images

This section presents our O(IJU(U − L) log J
U

log(U − L)) time algorithm for
segmenting a smooth stripped object in a 2-D medical image. We start with
our modeling the segmentation problem as searching optimal two “non-crossing”
paths in a graph, and then present our algorithms for the problem.

2.1 The Graph Model of the Problem

Let GM = (V,E) be a lattice graph, where V = {(i, j) | 0 ≤ i < I, 0 ≤ j < J}
and M is a given integer with 1 ≤ M ≤ J . Each vertex (i, j) of GM has a
real valued weight wij . We define the M-neighborhood of an vertex (i, j) ∈ V ,
denoted by NM (i, j), as a set of vertices on the same row with distance less
than M away from (i, j), i.e., NM (i, j) = {(i, k) | max{0, j − M + 1} ≤ k <

min{j + M,J}}. For each vertex (i, j) ∈ V , there is a directed edge going from
(i, j) to every vertex in NM ((i + 1) mod I, j). Besides these edges, there is no
other edge in the graph GM . We call such a graph an M -smoothness lattice
graph (e.g., see Figure 3(a)). Note that GM is in fact a directed acyclic graph
with vertex weights and has I rows and J columns. For a j ∈ {0, 1, . . . , J − 1},
let Pj be a path in GM from the vertex (0, j) to a vertex in NM (I − 1, j). Such
a path is called a c path. We define the weight of a path P in GM , w(P ), as the
total weight of vertices on P , i.e.,

∑

(i,j)∈p wij . Denote by P [i] the column index
of the vertex on path P at the i-th row. Given two integers 0 < L < U < J , two
c paths Pj and Pj′ (j < j′) are called a dual path of GM , denoted by P (j, j′), if
for any i (0 ≤ i < I), we have L ≤ Pj′ [i]−Pj [i] ≤ U (called thickness constraint).
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For a dual path P (j, j′), if j < j′, we call c path Pj (resp., Pj′) the left path
(resp., right path) of P (j, j′) (e.g., see Figure 3(a)). The weight of the dual path
P (j, j′) is the sum of the weights of Pj and Pj′ . For any j = 0, 1, . . . , J − 1, let
P (j, ∗) be a minimum-weight dual path in GM that starts at the vertex (0, j)
(i.e., either the left path or the right path of P (j, ∗) starts at the vertex (0, j)).
Our goal is to compute a dual path P ∗, whose weight is the minimum among all
dual paths in GM , i.e., w(P ∗) = min{w(P (0, ∗)), w(P (1, ∗)), . . . , w(P (J−1, ∗))}.

The problem of computing an optimal dual path P ∗ in GM is well motivated
by the need of detecting the coupled contours of smooth stripped objects in 2-
D biomedical images P(i, j) (i.e., smooth doughnut-shaped objects in I(x,y)).
We model an input 2-D image P(i, j) as a directed acyclic graph GM = (V,E)
with vertex weights, such that each pixel of P(i, j) corresponds to a vertex
in V , and the edges of E represent the connections among the pixels to form
feasible object borders, which, in fact, enforce the monotonicity and smoothness
constraints. The weight of a vertex in V is inversely related to the likelihood
that it may present on the desired border contour, which is usually determined
by using simple low-level image features [24, 22, 20]. Thus, a dual path P ∗ with
minimum total vertex weight in GM corresponds to the desired coupled borders
of a doughnut-shaped object in medical images. Such a path captures both the
local and global structures in determining optimal contours in the image.

Chen et al. [4] developed an O(IJ log J) time algorithm for computing an
optimal c path in GM . Actually, computing an optimal dual path in GM is to
seek two c paths that satisfy the thickness constraint. One may consider the
following greedy algorithm: Compute a minimum-weight c path P ∗ in GM by
using Chen et al.’s algorithm; and then “remove” P ∗ from GM and compute an
optimal c path P ′∗ in the resulting graph. Unfortunately, this heuristic does not
work well since P ∗ and P ′∗ may violate the thickness constraint. Thus, we need
to consider the left and right paths of a dual path simutaneously, which is the
main difficulty in generalizing the algorithm in [4]. Another simple strategy is
to consider all possible pairs of vertices (0, j) and (0, j′) such that L ≤ |j− j′| ≤
U . For each pair (0, j) and (0, j′), we compute a minimum-weight dual path
P ∗(j, j′) in O(IJ(U − L)M2) time using dynamic programming. Thus, the
running time of this algorithm is O(IJ2(U −L)2M2). However, we can do much

better. Our algorithm improves this solution by a factor of O( JM2(U−L)

U log J

U
log(U−L)

)

time by exploiting the intrinsic structures of dual paths.

2.2 The Structures of Dual Paths

In this section, we explore the structures of dual paths in GM , which enables us
to apply the divide-and-conquer paradigm. To simplify the discussion of dual
paths, as in [4], we modify GM in the following way: Duplicate the first row
of GM , append it after the last row of GM , let the vertices of the appended
row all have a weight zero, and add directed edges from the vertices of the last
row of GM to the vertices of the appended row based on the M -smoothness
constraint. We denote the appended row as row I and the modified graph as
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Figure 3: (a) A 2-smoothness lattice graph, in which dual path P (r, r′) consist-
ing of two c paths Pr and Pr′ is a dual path with L = 1 and U = 3. (b) Two
c paths crossing each other and their crossing pairs.

Ga
M . A 2-smoothness lattice graph Ga

M is shown in Figure 3(a), where the
appended vertices are dashed circles. Note that any dual path P (j, j′) in GM

can be viewed as a dual path P a(j, j′) in Ga
M that starts at the vertices (0, j)

and (0, j′) and ends at the vertices (I, j) and (I, j′), respectively. In Figure
3(a), the dual path P (r, r′) consists of two c paths Pr (i.e., the left path) and
Pr′ (i.e., the right path) indicated by solid thick edges. Henceforth, our focus
will be on Ga

M and its dual paths, and we simply denote Ga
M by GM and its

dual paths by P (j, j′).
To exploit the intrinsic structures of dual paths, first let us see some useful

observations of c paths. Let Pj and Pj′ be two c paths in GM starting at vertices
(0, j) and (0, j′), respectively, with 0 ≤ j < j′ < J . We say that each vertex
(i, Pj [i]) on Pj has a corresponding vertex (i, Pj′ [i]) on Pj′ at the i-th row. In
a similar way, for each subpath s = {(i, Pj [i]), (i + 1, Pj [i + 1]), . . . , (i′, Pj [i

′])}
on Pj , denoted by Pj [i · ·i

′], with 0 < i ≤ i′ < I, we define its corresponding
subpath s′ = {(i, Pj′ [i]), (i + 1, Pj′ [i + 1]), . . . , (i′, Pj′ [i′])} on Pj′ , denoted by
Pj′ [i ··i′]. A vertex (i, Pj [i]) on Pj is said to be strictly to the left (resp., right)
of Pj′ if its corresponding vertex (i, Pj′ [i]) on Pj′ has a larger (resp., smaller)
column index, i.e., Pj′ [i] > Pj [i] (resp., Pj′ [i] < Pj [i]). Two c paths Pj and
Pj′ are said to cross each other if there exists a vertex on Pj being strictly to
the right of Pj′ . Given a subpath s = Pj [i · ·i

′] on Pj and its corresponding
subpath s′ = Pj′ [i · ·i′] on Pj′ , with 0 < i ≤ i′ < I, s and s′ are said to form
a crossing pair if Pj [i − 1] ≤ Pj′ [i − 1], Pj [k] > Pj′ [k] for k = i, 1, . . . , i′, and
Pj [i

′ +1] ≤ Pj′ [i′ +1]. If Pj and Pj′ cross each other, then there certainly exists
at least one crossing pair between Pj and Pj′ .
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Observation 1 Let two c paths Pj and Pj′ start at vertices (0, j) and (0, j′),
respectively, with j < j′. If Pj and Pj′ cross each other, then there exists a
crossing pair.

Figure 3(b) illustrates two c paths P3 and P4 crossing each other. For sim-
plicity, we only show the edges on the paths. Therein, the vertex (0, 2) on P3

is strictly to the left of P4 and the vertex (4, 4) on P3 is strictly to the right of
P4. There are two crossing pairs, (s1, s

′
1) and (s2, s

′
2), between P3 and P4.

Now, let us consider a minimum-weight dual path P (r, ∗). Recall that either
the left path or the right path of P (r, ∗) starts at the vertex (0, r). WLOG, we
assume that the left path of P (r, ∗) starts at (0, r) and the right path is Pr′ with
r < r′. The next lemma is a key to our algorithm for computing the optimal
dual path P ∗.

Lemma 1 Given a minimum-weight dual path P (r, ∗) in GM , for any 0 ≤ j ≤
r′ − U (resp., r + U ≤ j < J), there exists an optimal dual path P (j, ∗) whose
right path (resp., left path) does not cross Pr′ (resp., Pr), where Pr′ (resp., Pr)
is the right path (resp., left path) of P (r, ∗).

Proof: We prove the part that for any 0 ≤ j ≤ r′−U , there exists a minimum-
weight dual path P (j, ∗) whose right path does not cross Pr′ . The symmetric
part can be proved in a similar way.

Suppose that there exists a minimum-weight dual path P (s, ∗) with 0 ≤ s ≤
r′ − U , whose right path does cross Pr′ . WLOG, we assume that Ps is the
left path and Ps′ is the right path of P (s, ∗). Due to the thickness constraint,
s′ − s ≤ U . Note that Pr (resp., Pr′) is the left path (resp., right path) of the
optimal dual path P (r, ∗). Now that 0 ≤ s ≤ r′ − U , we thus have s′ ≤ r′.
Based on the assumption that Ps′ and Pr′ cross each other and Observation 1,
Ps′ and Pr′ have crossing pairs (e.g., see Figure 4(a)). We denote the crossing
pairs by Ps′ [i′1 ··i

′
2] and Pr′ [i′1 ··i

′
2], . . ., Ps′ [i′2b−1 ··i

′
2b] and Pr′ [i′2b−1 ··i

′
2b], where

b > 0. Then, consider the left paths Ps and Pr. Note that Ps and Pr may or
may not cross each other. If Ps and Pr cross each other, then we denote the
crossing pairs by Ps[i1 ··i2] and Pr[i1 ··i2], . . ., Ps[i2d−1 ··i2d] and Pr[i2d−1 ··i2d].
For simplicity, if d = 0, we mean that Ps and Pr do not cross each other.

The following observations are a key. Replacing Ps′ [i′2k−1 ··i
′
2k] by Pr′ [i′2k−1 ·

·i′2k] for all 1 ≤ k ≤ b gives a new c path P ′
s′ ; while substituting Ps[i2k−1 ··i2k]

by Pr[i2k−1 · ·i2k] for all 1 ≤ k ≤ d results in another new c path P ′
s in GM .

Further, both paths P ′
s′ and Pr′ (resp., P ′

s and Pr) do not cross each other.
Such a replacement is called an uncrossing operation (see Figure 4). We need
to prove that P ′

s and P ′
s′ form a feasible dual path P ′(s, s′), i.e., P ′

s and P ′
s′ are

c paths and meet the thickness constraint.

Claim 1 Both P ′
s and P ′

s′ are c paths.

We first show that P ′
s is a c path. It is sufficient to demonstrate that, for each

crossing pair Ps[i2k−1 · ·i2k] and Pr[i2k−1 · ·i2k] (1 ≤ k ≤ d), both (Ps[i2k−1 −
1], Pr[i2k−1]) and (Pr[i2k], Ps[i2k + 1]) are an edge in GM after the uncrossing
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operation (see Figure 4). Considering (Ps[i2k−1 − 1], Pr[i2k−1]), we distinguish
two cases.

• Case 1: Ps[i2k−1 − 1] = Pr[i2k−1 − 1] (see Figure 4(a)). Since (Pr[i2k−1 −
1], Pr[i2k−1]) is an edge on Pr, (Ps[i2k−1 − 1], Pr[i2k−1]) obviously is an
edge in GM .

• Case 2: Ps[i2k−1 − 1] 6= Pr[i2k−1 − 1]. Note that actually Ps[i2k−1 −
1] < Pr[i2k−1 − 1]. (1) If Ps[i2k−1 − 1] ≥ Pr[i2k−1] (see Figure 4(b)),
then |Ps[i2k−1 − 1] − Pr[i2k−1]| = Ps[i2k−1 − 1] − Pr[i2k−1] < Pr[i2k−1 −
1] − Pr[i2k−1] = |Pr[i2k−1 − 1] − Pr[i2k−1]| < M . Hence, (Ps[i2k−1 −
1], Pr[i2k−1]) is an edge in GM . (2) If Ps[i2k−1 − 1] < Pr[i2k−1] (see
Figure 4(c)), then |Ps[i2k−1 − 1] − Pr[i2k−1]| = Pr[i2k−1] − Ps[i2k−1 −
1] < Ps[i2k−1] − Ps[i2k−1 − 1] = |Ps[i2k−1] − Ps[i2k−1 − 1]| < M . Thus,
(Ps[i2k−1 − 1], Pr[i2k−1]) is an edge in GM .

Similarly, we can show that (Pr[i2k], Ps[i2k +1]) is an edge of GM . Hence, P ′
s

is a c path in GM . Using the same argument, P ′
s′ can be shown to be a c path.

2

Claim 2 P ′
s and P ′

s′ satisfy the thickness constraint.

For any 1 ≤ k ≤ b, we call Ps′ [i′2k−1 ··i
′
2k] a peak while Ps′ [i′2k + 1 ··i′2k+1 − 1] a

valley of Ps′ with respect to Pr′ , where i′2b+1 = I. Note that the column index
of the vertex on Ps′ at row I (i.e., Ps′(I)) equals to Ps′ [0] (i.e., s′) and s′ ≤ r′.
We thus also say Ps′ [0 · ·i′1] is a valley of Ps′ with respect to Pr′ . Similarly, if
Ps and Pr cross each other (i.e., d > 0), Ps[i2k−1 · ·i2k] (1 ≤ k ≤ d) are called
peaks of Ps with respect to Pr, and Ps[0 · ·i1] and Ps[i2k · ·i2k+1] (1 ≤ k ≤ d

and i2d+1 = I) are called valleys of Ps; otherwise, we say the whole Ps is a
valley with respect to Pr (note that s ≤ r). In addition, if a vertex is on the
peak (resp., valley) of Ps′ or Ps, we call it a peak vertex (resp., valley vertex)
of the corresponding c path. By performing the uncrossing operations, for each
peak vertex of Ps′ (resp., Ps), its corresponding vertex on Pr′ (resp., Pr) is on
the resulting c path P ′

s′ (resp., P ′
s). Note that any vertex of Ps′ and Ps can be

either a peak or a valley vertex. Hence, the vertex pair ((i, Ps[i]), (i, Ps′ [i])) of
P (s, s′) has four possible patterns: (peak, peak), (peak, valley), (valley, peak),
and (valley, valley) as illustrated in Figure 5(a). For each case, we can show
that L ≤ P ′

s′ [i] − P ′
s[i] ≤ U , as follows.

• Case 1: The vertex pair ((i, Ps′ [i]), (i, Ps[i])) is of pattern (peak, peak).
P ′

s′ [i] = Pr′ [i] and P ′
s[i] = Pr[i]. Since the dual path P (r, ∗) satisfies the

thickness constraint, we have L ≤ P ′
s′ [i] − P ′

s[i] ≤ U .

• Case 2: The vertex pair ((i, Ps′ [i]), (i, Ps[i])) is of pattern (peak, valley).
P ′

s′ [i] = Pr′ [i] and P ′
s[i] = Ps[i]. Now that (i, Ps′ [i]) is a peak vertex

of Ps′ with respect to Pr′ , we have Ps′ [i] > Pr′ [i]; while (i, Ps[i]) is a
valley vertex of Ps with respect to Pr, hence, Ps[i] ≤ Pr[i]. We thus have
P ′

s′ [i] − P ′
s[i] = Pr′ [i] − Ps[i] ≥ Pr′ [i] − Pr[i] ≥ L and P ′

s′ [i] − P ′
s[i] =

Pr′ [i] − Ps[i] ≤ Ps′ [i] − Ps[i] ≤ U . Hence, L ≤ P ′
s′ [i] − P ′

s[i] ≤ U .
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Figure 5: Illustrating the proof of Lemma 1. The optimal dual path P (r, ∗)
is indicated by solid edges, while the optimal dual path P (s, ∗) is indicated
by dashed edges. (a) The left path Ps of P (s, ∗) crosses the left path Pr of
P (r, ∗); the right path Ps′ of P (s, ∗) crosses the right path Pr′ of P (r, ∗). (b)
Performing uncrossing operations on P (s, ∗) in a) obtains another minimum-
weight dual path starting at vertex (0, s) such that its left and right paths do
not cross the left and right paths of P (r, ∗), respectively.
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• Case 3: The vertex pair ((i, Ps′ [i]), (i, Ps[i])) is of pattern (valley, peak).
P ′

s′ [i] = Ps′ [i] and P ′
s[i] = Pr[i]. Since (i, Ps′ [i]) is a valley vertex of Ps′

with respect to Pr′ , we have Ps′ [i] ≤ Pr′ [i]. Similarly, considering vertex
(i, Ps[i]), we have Ps[i] > Pr[i]. Thus, P ′

s′ [i] − P ′
s[i] = Ps′ [i] − Pr[i] ≥

Ps′ [i] − Ps[i] ≥ L and P ′
s′ [i] − P ′

s[i] = Ps′ [i] − Pr[i] ≤ Pr′ [i] − Pr[i] ≤ U .
Hence, L ≤ P ′

s′ [i] − P ′
s[i] ≤ U .

• Case 4: The vertex pair ((i, Ps′ [i]), (i, Ps[i])) is of pattern (valley, valley).
P ′

s′ [i] = Ps′ [i] and P ′
s[i] = Ps[i]. Since the dual path P (s, ∗) satisfies the

thickness constraint, we have L ≤ P ′
s′ [i] − P ′

s[i] ≤ U .

Symmetrically, by replacing Pr′ [i′k−1 ··i
′
k] (resp., Pr[ik−1 ··ik]) by Ps′ [i′k−1 ··i

′
k]

(resp., Ps[ik−1 ··ik]) for all 1 ≤ k ≤ b (resp., 1 ≤ k ≤ d), we obtain a new c path
P ′

r′ (resp., P ′
r) such that P ′

r′ and Ps′ (resp., P ′
s and Pr) do not cross each other.

In a similar way, we can show that the resulting c paths P ′
r and P ′

r′ are a feasible
dual path, denoted by P ′(r, r′), which starts at vertices (0, r) and (0, r′).

Claim 3 w(P (s, s′)) = w(P ′(s, s′)).

We next need to show that the total weight of all peaks of Ps′ and Ps equals to
that of their corresponding subpaths on Pr′ and Pr, that is,

b
∑

k=1

w(Ps′ [i′2k−1 ··i
′
2k]) +

d
∑

k=1

w(Ps[i2k−1 ··i2k])

=

b
∑

k=1

w(Pr′ [i′2k−1 ··i
′
2k]) +

d
∑

k=1

w(Pr[i2k−1 ··i2k]).

Note that unlike [4], the weight of an individual peak may not be equal to that
of its corresponding subpath. We claim that

b
∑

k=1

w(Ps′ [i′2k−1 ··i
′
2k]) +

d
∑

k=1

w(Ps[i2k−1 ··i2k])

≤
b

∑

k=1

w(Pr′ [i′2k−1 ··i
′
2k]) +

d
∑

k=1

w(Pr[i2k−1 ··i2k]).

Otherwise, we perform uncrossing operations on P (s, ∗) and P (r, ∗) to obtain a
feasible dual path P ′(s, s′), as we have shown above. Notice that

b
∑

k=1

w(Ps′ [i′2k−1 ··i
′
2k]) +

d
∑

k=1

w(Ps[i2k−1 ··i2k])

>

b
∑

k=1

w(Pr′ [i′2k−1 ··i
′
2k]) +

d
∑

k=1

w(Pr[i2k−1 ··i2k]).
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We thus have w(P ′(s, s′)) < w(P (s, ∗)), which is a contradiction to the opti-
mality of P (s, ∗). Hence,

b
∑

k=1

w(Ps′ [i′2k−1 ··i
′
2k]) +

d
∑

k=1

w(Ps[i2k−1 ··i2k])

≤
b

∑

k=1

w(Pr′ [i′2k−1 ··i
′
2k]) +

d
∑

k=1

w(Pr[i2k−1 ··i2k]). (1)

In a similar way, by performing uncrossing operations on P (r, ∗) and P (s, ∗) to
obtain a feasible dual path P ′(r, r′), we can also show that

b
∑

k=1

w(Ps′ [i′2k−1 ··i
′
2k]) +

d
∑

k=1

w(Ps[i2k−1 ··i2k])

≥
b

∑

k=1

w(Pr′ [i′2k−1 ··i
′
2k]) +

d
∑

k=1

w(Pr[i2k−1 ··i2k]). (2)

Hence, form equations (1) and (2), we have

b
∑

k=1

w(Ps′ [i′k−1··i
′
k])+

d
∑

k=1

w(Ps[ik−1··ik]) =

b
∑

k=1

w(Pr′ [i′k−1··i
′
k])+

d
∑

k=1

w(Pr[ik−1··ik]),

and further, w(P (s, s′)) = w(P ′(s, s′)).
Thus, for any 0 ≤ j ≤ r′ − U , there exists a minimum-weight dual path

P (j, ∗) whose right path does not go across Pr′ . The symmetric part that, for
any r + U ≤ j < J , there existes an optimal dual path P (j, ∗) whose left path
does not cross Pr, can be proved by using a similar argument. Therefore, the
lemma holds. 2

Lemma 1 provides a basis for a divide-and-conquer solution for computing
the optimal dual path in GM . Given an optimal dual path P (r, ∗) consisting of
two c paths Pr and Pr′ with r < r′, we can decompose GM into two “smaller”
subgraphs along P (r, ∗), and then compute the optimal dual paths in such
“smaller” graphs. Before going into details on the decomposition of GM , we
first present our algorithm for computing an optimal dual path P (r, ∗) in the
following section.

2.3 Computing Optimal Dual Path P (r, ∗)

This section shows how to efficiently compute a minimum-weight dual path in
GM , say, P (r, ∗) that starts at the vertex (0, r) for any r ∈ {0, 1, . . . , J−1}. Due
to the thickness constraint, the possible vertices that the other c path in P (r, ∗)
may start at are only a subset of vertices on row 0 whose column indices are in
S1 = {r +L ≤ k ≤ min{r +U, J − 1}}

⋃

S2 = {min{r−U, 0} ≤ k ≤ r−L}. Of
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course, the optimal dual path P (r, ∗) can be obtained by computing minimum-
weight dual paths P ∗(r, k) for all k ∈ S1 and P ∗(k, r) for all k ∈ S2. However,
we can do better by judiciously explore the structures of P (r, ∗).

Given two c paths, Pj and Pj′ , we say Pj is to the left (resp., right) of Pj′

if for any 0 ≤ i ≤ I, Pj [i] ≤ Pj′ [i] (resp., Pj [i] ≥ Pj′ [i]). The following lemma
makes possible to apply the divide-and-conquer strategy to compute P (r, ∗).

Lemma 2 (1) Given an optimal dual path P ∗(r, u) (u ∈ S1) whose left path is
Pr and right path is Pu, for any k ∈ S1 and k > u (resp., k < u), there exists a
minimum-weight dual path P ∗(r, k) such that its right path P ′

k and left path P ′
r

are to the right (resp., left) of Pu and Pr, respectively.
(2) Given an optimal dual path P ∗(u, r) (u ∈ S2) whose left path is Pu and

right path is Pr, for any k ∈ S2 and k > u (resp., k < u), there exists a
minimum-weight dual path P ∗(k, r) such that its left path P ′

k and right path P ′
r

are to the right (resp., left) of Pu and Pr, respectively.

Proof: The lemma follows by a similar argument for proving Lemma 1. 2

We compute the optimal dual paths P ∗(r, k) for every k ∈ S1, as follows.
First, the minimum-weight dual paths P ∗(r, r+L) and P ∗(r,min{r+U, J −1})
are computed (see Section 2.4). Denote by LL and LR the left and right paths of
P ∗(r, r+L), respectively; while the left and right paths of P ∗(r,min{r+U, J−1})
are respectively denoted by RL and RR. For any k ∈ S1, based on Lemma 2,
the left path P of P ∗(r, k) is bounded by LL and RL (i.e., LL[i] ≤ P [i] ≤ RL[i]
for each row i) and the right path of P ∗(r, k) is bounded by LR and RR.

Let u be the median of S1 (i.e., u =
⌈

(r+L)+min{r+U,J−1}
2

⌉

). The minimum-

weight dual path P ∗(r, u) consisting of c paths Pr and Pu, is then computed.
Using P ∗(r, u), we define four sets JL

i = {LL[i], LL[i] + 1, . . . , Pr[i]}, JR
i =

{Pr[i], Pr[i]+1, . . . , RL[i]}, J ′L
i = {LR[i], RL[i]+1, . . . , Pu[i]}, and J ′R

i = {Pu[i],
Pu[i] + 1, . . . , RR[i]}, for every i = 0, 1, . . . , I. Then, along each c path of the
dual path P ∗(r, u) , we decompose the graph GM into two subgraphs. G1 =
(V1, E1) and G2 = (V2, E2) are obtained by decomposing GM along Pr, where
V1 = {(i, j) | i ∈ {0, 1, . . . , I}, j ∈ JL

i }, E1 = {e ∈ E | both vertices of e are in
V1}, V2 = {(i, j) | i ∈ {0, 1, . . . , I}, j ∈ JR

i }, and E2 = {e ∈ E | both vertices
of e are in V2}; G′

1 = (V ′
1 , E′

1) and G′
2 = (V ′

2 , E′
2) are obtained by decomposing

GM along Pu, where V ′
1 = {(i, j) | i ∈ {0, 1, . . . , I}, j ∈ J ′L

i }, E
′
1 = {e ∈ E |

both vertices of e are in V ′
1}, V ′

2 = {(i, j) | i ∈ {0, 1, . . . , I}, j ∈ J ′R
i }, and

E′
2 = {e ∈ E | both vertices of e are in V ′

2}. Based on Lemma 2, for any k ∈ S1

and k < u (resp., k > u), there exists a minimum-weight dual path P ∗(r, k) in
GM such that its right path lies in G′

1 (resp., G′
2) and its left path lies in G1

(resp., G2). Therefore, we recursively compute optimal dual paths P ∗(r, k) for
k ∈ S1 and k < u (resp., k > u) in G1 and G′

1 (resp., G2 and G′
2). Clearly,

the recursion tree of our above divide-and-conquer algorithm has O(log(U −L))
levels; at each level, a subset of dual paths P ∗(r, k) is computed (in certain
subgraphs of GM ).
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Similarly, we can compute the minimum-weight dual path P ∗(k, r) for every
k ∈ S2. Thus, the following lemma holds.

Lemma 3 For any given r (r ∈ {0, 1, . . . , J − 1}), the minimum-weight dual
path P (r, ∗) can be computed in O(T log(U − L)) time, where T is the time for
computing an optimal dual path P ∗(j, j′) in GM whose c paths start at vertices
(0, j) and (0, j′).

2.4 Computing Minimum-Weight Dual Path P ∗(r, r′)

In this section, we present our efficient algorithm for computing an optimal
dual path P ∗(r, r′) whose left and right paths start at vertices (0, r) and (0, r′),
respectively.

We begin with a less efficient dynamic programming algorithm for computing
P ∗(r, r′) in GM . First, note that the edges of GM can be represented implicitly.
That is, without explicitly storing its edges, we can determine for every vertex of
GM the set of its incoming and outgoing neighbors in O(1) time. Our algorithm
uses this implicit representation of GM . To help our presentation, we say two
paths in GM to be a twin path if they start at two vertices of row 0 and satisfy the
thickness constraint. The weight of a twin path is the total weight of vertices
on both paths. We denote by mi[j, k] the weight of the optimal twin path
in GM starting from the vertices (0, r) and (0, r′) to vertices (i, j) and (i, k),
respectively. Due to the smoothness constraint, vertex (i, j) can be reached
from any vertex of row i− 1 in {(i− 1, j′) | max{0, j −M + 1} ≤ j′ ≤ min{J −
1, j + M − 1}}; while vertex (i, k) can be reached from any vertex of row i − 1
in {(i − 1, k′) | max{0, k − M + 1} ≤ k′ ≤ min{J − 1, k + M − 1}}. But, the
thickness constraint restricts our choices of the pair of vertices on row i − 1.
Actually, for any j′ such that max{0, j −M + 1} ≤ j′ ≤ min{J − 1, j + M − 1},
we have max{j′ + L, k − M + 1} ≤ k′ ≤ min{j′ + U, k + M − 1}. Hence,

mi[j, k] =
min{J−1,j+M−1}

min
j′=max{0,j−M+1}

min{j′+U,k+M−1}

min
k′=max{j′+L,k−M+1}

mi−1[j
′, k′]+w(i, j)+w(i, k), (∗)

when i > 0 and L ≤ k − j ≤ U . Initially, m0[r, r
′] = w(0, r) + w(0, r′) and

m0[j, k] = ∞ if j 6= r or k 6= r′. In addition, we use table ci[j, k] to keep
track of the optimal twin paths, i.e., if the optimal twin path from (0, r) and
(0, r′) to (i, j) and (i, k) is via (i − 1, j′) and (i − 1, k′) on row i − 1, then
ci[j, k] = (j′, k′). One can certainly apply a dynamic programming technique to
compute the minimum-weight path P ∗(r, r′). In fact, mI [r, r

′] is the weight of
P ∗(r, r′). Then, the real dual path P ∗(r, r′) can be reconstructed by using table
ci[j, k]. For each possible pair of j and k, we need to compute the minimum of
O(M2) values; and there are O(J(U − L)) such pairs on each row i. Hence, a
straightforward dynamic programming algorithm takes O(IJ(U − L)M2) time
to compute P ∗(r, r′).

Interestingly, we are able to extend the technique developed in [4] to elimi-
nate the M2 factor for the time complexity.
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Figure 6: Incrementally computing the minimum of elements in mi−1 that are
covered by a rectangle of size of (2M − 1) × (2M − 1). Herein, M = 2, L = 2,
and U = 8

Suppose that all the optimal twin paths to vertices on rwo i − 1 have been
computed and the weights of these paths, mi−1[j

′, k′] for 0 ≤ j′ < J and
j+L ≤ k′ ≤ min{J−1, j+U}, are stored (e.g., see Figure 6). Based on equation
(∗), in order to compute mi[j, k], we need to know the minimum of mi−1[j

′, k′]’s
for j −M + 1 ≤ j′ ≤ j + M − 1 and k −M + 1 ≤ k′ ≤ k + M − 1, which defines
a rectangular region of size (2M − 1) × (2M − 1) in mi−1. The center of the
rectangle corresponds to the column index pair < j, k >. Note that some pairs
of < j′, k′ > may not correspond to a twin path. We may view mi−1(j

′, k′) as
∞ for those index pairs. In Figure 6, the dots indicate the index pairs < j′, k′ >

that correspond to a twin path in GM . Thus, for each pair < j, k >, we only
need to compute the minimum of elements in mi−1 that are covered by the
rectangle R centered at < j, k > with size of (2M − 1) × (2M − 1). Note that
while moving the center of R from < j, k > to < j, k+1 > or to < j+1, k >, only
O(M) elements in R are changed. Thus, one may maintain a priority queue to
compute the minimum of elements in R. In this way, computing the minimum
for an index pair < j, k > takes O(M log M) time. However, we can compute
the minima for all (J(U − L + 1)) < j, k > pairs in O(J(U − L)) time.

Given an array A of n real numbers and an integer M with 1 ≤ M ≤ n,
the min-M -neighbor of A[i] is defined as min{A[k] | max{0, i − M + 1} ≤ k ≤
min{n−1, i+M −1}}. Chen et al. [4] developed a simple linear time algorithm
for computing the min-M -neighbors for all elements in A. We next apply their
technique to compute the minima for all < j, k > pairs, as follows. For each row
mi−1[j

′] of mi−1, compute the min-M -neighbor for every element in mi−1[j
′] in

O(U −L) time, since each row has at most (U −L + 1) elements. The resulting
min-M -neighbors are kept in another 2-D array m′

i−1. Then, for each column
m′

i−1[k
′] of m′

i−1, compute the min-M -neighbor for every element in m′
i−1[k

′] in
O(U −L) time, since each column has at most (U −L + 1) elements. Note that
the min-M -neighbor of the j′-th element in m′

i−1[k
′] equals to the minimum of
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Figure 7: Illustrating the divide-and-conquer algorithm for computing the op-
timal dual paths P (j, ∗).

elements in mi−1 that are covered by the rectangle R of size (2M−1)×(2M−1)
when centered at < j′, k′ >. Therefore, the minima for all < j, k > pairs can
be computed in O(J(U − L)) time. Thus, Lemma 4 follows.

Lemma 4 The minimum-weight dual path P ∗(r, r′) can be computed in O(IJ(U−
L)) time.

Together with Lemma 3, we have the following lemma.

Lemma 5 For any given r (r ∈ {0, 1, . . . , J − 1}), the minimum-weight dual
path P (r, ∗) can be computed in O(IJ(U − L) log(U − L)) time.

2.5 Our Algorithm

Now, we are ready to present our O(IJU(U−L) log J
U

log(U−L))-time algorithm
for computing an optimal dual path P ∗ in GM .

Note that the optimal dual path P ∗ of GM can be obtained from P (0, ∗),
P (1, ∗), . . . , P (J − 1, ∗). To compute all dual paths P (0, ∗), P (1, ∗), . . . , P (J −
1, ∗) in GM , we first compute the minimum-weight dual path P (

⌈

J−1
2

⌉

, ∗) using

our algorithm in Sections 2.3 and 2.4. Assume the left path of P (
⌈

J−1
2

⌉

, ∗) is

Pr and the right path is Pr′ (note that either r or r′ equals to
⌈

J−1
2

⌉

). Using

P (
⌈

J−1
2

⌉

, ∗), we define two sets JL
i = {0, 1, . . . , Pr′ [i]} and JR

i = {Pr[i], Pr[i] +
1, . . . , J − 1}, for every i = 0, 1, . . . , I. Then along the dual path P (r, ∗) , we
decompose the graph GM into two subgraphs F1 = (V1, E1) and F2 = (V2, E2),
where V1 = {(i, j) | i ∈ {0, 1, . . . , I}, j ∈ JL

i }, E1 = {e ∈ E | both vertices of
e are in V1}, V2 = {(i, j) | i ∈ {0, 1, . . . , I}, j ∈ JR

i }, and E2 = {e ∈ E | both
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vertices of e are in V2}. Figure 7 illustrates the decomposition of the graph GM

into two subgraphs F1 and F2 along the dual path P (r, ∗). Based on Lemma 1,
for any 0 ≤ j ≤ r′ −U , there exists a minimum-weight dual path P (j, ∗) of GM

in F1, and for any r + U ≤ j < J , there exists a minimum-weight dual path
P (j, ∗) of GM in F2. Hence, we recursively compute P (j, ∗) for 0 ≤ j ≤ r′ − U

and for r + U ≤ j < J in F1 and F2, respectively. However, for every j such
that r′ − U < j < r + U , the optimal dual path P (j, ∗) may be neither in
F1 nor F2 (simply performing uncrossing operations does not work well; the
resulting two c paths may violate the thickness constraint). Thus, we compute
every minimum-weight dual path P (j, ∗) for r′ − U < j < r + U in GM using
our algorithm in Sections 2.3 and 2.4. Since there are O(U) such j’s, based
on Lemma 5, the running time is O(IJU(U − L) log(U − L)). Clearly, the
recursion tree of our above divide-and-conquer algorithm has O(log J

U
) levels.

At each recursion level k, the total size of the vertex sets of all the subgraphs is
bounded by O(IJ + 2kIU). Thus, the total running time of the recursion level
k is O(I(J + 2kU)U(U − L) log(U − L)). Hence, the total time of the overall
divide-and-conquer algorithm is O(IJU(U − L) log J

U
log(U − L)).

Theorem 1 Given an implicitly represented M -smoothness lattice graph GM ,
a minimum-weight dual path P ∗ in GM can be computed in O(IJU(U−L) log J

U

log(U − L)) time.

3 Implementation and Experiments

To further study the behavior and performance of our dual path algorithm, we
have implemented it using C++. Our implementation is based on the algorithm
described in Section 2. The acceleration technique for the dynamic programming
algorithm described in Section 2.4 has not been implemented in the current
software. The algorithm has been implemented from scratch only utilizing the
Boost C++ libraries1 and the Blitz++2 matrix library.

After the implementation, our algorithm/program was tested on a Dell
XPS/Dimension 9150 with 2GB memory and 2.80GHz Intel Pentium-D CPU.
We conducted preliminary tests on 82 manual tracings of stereo photographs of
the optic nerve head. The segmented regions represented the rim and cup of the
optic disc. The thickness constraints, L and U, and smoothness parameter, M,
were selected manually based on empirical evidence. Some example results are
demonstrated in Figure 8. Our experiments showed that the execution times
of our dual path algorithm with realistic parameters are very fast, all under
a few minutes for a typical 256 × 256 image. This is significantly faster than
the traditional dynamic programming algorithm without the divide-and-conqure
improvements (see Tables 1 and 2).

1Boost C++ is a growing set of libraries that emphasizes compliance with the C++ Stan-

dard Library and can be found at http://www.boost.org.
2Blitz++ is a fast matrix library for C++ and can be found at http://www.oonumerics.

org/blitz.
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Figure 8: Example results for three different datasets. The left column shows
the original images (the left images of the stereo pairs), the middle column is our
segmentation results, and the right column shows the results manually traced
by human experts.

U Brute Force (s) Dual Path (s)

2 5.915 2.684
4 28.235 10.190
8 127.417 35.951
16 497.983 91.359
32 1753.872 250.476
64 341.838
128 345.120

Table 1: Algorithm performance of varying thickness constraints. 128 × 128
vertex graph, M = 3, L = 1.
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Graph Size Brute Force (s) Dual Path (s)

32×32 5.126 1.839
64×64 53.612 14.707

128×128 497.983 91.359
256×256 4241.395 599.940

32×64 10.962 3.298
32×128 22.623 6.121
32×256 45.680 11.836
32×512 92.765 23.643

64×32 21.624 6.837
128×32 59.593 17.615
256×32 130.465 56.021
512×32 272.332 98.308

Table 2: Algorithm performance of varying image sizes. M = 3, L = 1, U = 16.
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